China best Sintered Alloy Iron/Copper-Iron CNC Machinery Auto Car Motorcycle Electrical Tools Textile Engine Gearbox Transmission Reducer Flexible Shaft Jaw Coupling

Product Description


Excellent powder metallurgy parts metallic sintered parts
We could offer various powder metallurgy parts including iron based and copper based with top quality and cheapest price, please only send the drawing or sample to us, we will according to customer’s requirement to make it. if you are interested in our product, please do not hesitate to contact us, we would like to offer the top quality and best service for you. thank you!

How do We Work with Our Clients
1. For a design expert or a big company with your own engineering team: we prefer to receive a fully RFQ pack from you including drawing, 3D model, quantity, pictures;

2. For a start-up company owner or green hand for engineering: just send an idea that you want to try, you don’t even need to know what casting is;

3. Our sales will reply you within 24 hours to confirm further details and give the estimated quote time;

4. Our engineering team will evaluate your inquiry and provide our offer within next 1~3 working days.

5. We can arrange a technical communication meeting with you and our engineers together anytime if required.

Place of origin: Jangsu,China
Type: Powder metallurgy sintering
Spare parts type: Powder metallurgy parts
Machinery Test report: Provided
Material: Iron,stainless,steel,copper
Key selling points: Quality assurance
Mould type: Tungsten steel
Material standard: MPIF 35,DIN 3571,JIS Z 2550
Application: Small home appliances,Lockset,Electric tool, automobile,
Brand Name: OEM SERVICE
Plating: Customized
After-sales Service: Online support
Processing: Powder Metallurgr,CNC Machining
Powder Metallurgr: High frequency quenching, oil immersion
Quality Control: 100% inspection

The Advantage of Powder Metallurgy Process

1. Cost effective
The final products can be compacted with powder metallurgy method ,and no need or can shorten the processing of machine .It can save material greatly and reduce the production cost .

2. Complex shapes
Powder metallurgy allows to obtain complex shapes directly from the compacting tooling ,without any machining operation ,like teeth ,splines ,profiles ,frontal geometries etc.

3. High precision
Achievable tolerances in the perpendicular direction of compacting are typically IT 8-9 as sintered,improvable up to IT 5-7 after sizing .Additional machining operations can improve the precision .

4. Self-lubrication
The interconnected porosity of the material can be filled with oils ,obtaining then a self-lubricating bearing :the oil provides constant lubrication between bearing and shaft ,and the system does not need any additional external lubricant .

5. Green technology
The manufacturing process of sintered components is certified as ecological ,because the material waste is very low ,the product is recyclable ,and the energy efficiency is good because the material is not molten. 

FAQ
Q1: What is the type of payment?
A: Usually you should prepay 50% of the total amount. The balance should be pay off before shipment.

Q2: How to guarantee the high quality?
A: 100% inspection. We have Carl Zeiss high-precision testing equipment and testing department to make sure every product of size,appearance and pressure test are good. 

Q3: How long will you give me the reply?
A: we will contact you in 12 hours as soon as we can.

Q4. How about your delivery time?
A: Generally, it will take 25 to 35 days after receiving your advance payment. The specific delivery time depends on the items and the quantity of your order. and if the item was non standard, we have to consider extra 10-15days for tooling/mould made.

Q5. Can you produce according to the samples or drawings?
A: Yes, we can produce by your samples or technical drawings. We can build the molds and fixtures.

Q6: How about tooling Charge?
A: Tooling charge only charge once when first order, all future orders would not charge again even tooling repair or under maintance.

Q7: What is your sample policy?
A: We can supply the sample if we have ready parts in stock, but the customers have to pay the sample cost and the courier cost.

Q8: How do you make our business long-term and good relationship?
A: 1. We keep good quality and competitive price to ensure our customers benefit ;
    2. We respect every customer as our friend and we sincerely do business and make friends with them, no matter where they come from.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

jaw coupling

Differences between Elastomer and Metallic Jaw Coupling Designs

Jaw couplings are available in two primary designs: elastomer jaw couplings and metallic jaw couplings. Each design has its own set of characteristics and advantages:

  • Elastomer Jaw Couplings: Elastomer jaw couplings, also known as flexible jaw couplings, feature an elastomeric spider element that sits between the two hubs. This spider element is typically made of materials like polyurethane, rubber, or other flexible polymers. The elastomeric material provides the coupling with flexibility, allowing it to compensate for shaft misalignment, angular, parallel, and axial, as well as dampen vibrations and shocks. Elastomer jaw couplings are popular for their ability to protect connected equipment from mechanical stresses and enhance overall system performance. They are commonly used in applications where some misalignment is expected or in systems with shock loads and vibrations. Additionally, elastomer jaw couplings are known for their relatively lower cost compared to metallic designs.
  • Metallic Jaw Couplings: Metallic jaw couplings, also known as rigid jaw couplings, are constructed entirely from metal, usually steel or aluminum. Unlike elastomer couplings, metallic jaw couplings do not have an elastomeric spider element and offer a more rigid connection between the two hubs. As a result, they are less forgiving of misalignment and do not provide the same level of vibration dampening as elastomer couplings. However, metallic jaw couplings offer higher torque capacity and are better suited for applications where precise shaft alignment is critical. They are commonly used in systems that require high torque transmission and minimal torsional flexibility. Additionally, metallic jaw couplings are well-suited for environments with high temperatures or exposure to chemicals, as they can withstand harsher conditions compared to elastomer designs.

The choice between elastomer and metallic jaw couplings depends on the specific requirements of the application. If flexibility, misalignment compensation, and vibration dampening are crucial, elastomer jaw couplings are preferred. On the other hand, when high torque transmission, precise alignment, and durability in challenging environments are needed, metallic jaw couplings are the better option.

jaw coupling

How does a jaw coupling help in power transmission efficiency?

A jaw coupling plays a significant role in enhancing power transmission efficiency in mechanical systems. It achieves this by incorporating several design features that minimize energy losses and maximize the transfer of power from one shaft to another. Here are some ways in which a jaw coupling helps improve power transmission efficiency:

  1. Mechanical Flexibility: Jaw couplings utilize a flexible elastomer spider as the connecting element between the two shafts. This elastomer spider allows for a certain degree of angular and parallel misalignment between the shafts without imposing significant additional loads on the connected equipment. The mechanical flexibility of the elastomer helps reduce the generation of excess heat and vibration, thereby optimizing power transmission efficiency.
  2. Vibration Damping: The elastomer spider in a jaw coupling also acts as a vibration-damping element. It absorbs and dissipates vibrations generated during the operation of rotating machinery. By dampening vibrations, the coupling reduces energy losses due to mechanical oscillations, which can otherwise decrease the overall power transmission efficiency.
  3. Shock Absorption: In addition to damping vibrations, jaw couplings can handle sudden shocks and impacts that may occur during equipment operation. The elastomer spider’s ability to absorb shocks prevents sudden force spikes from propagating through the system and helps maintain steady power transmission, thus improving overall efficiency.
  4. Reduced Friction: The design of jaw couplings minimizes sliding friction between the shafts and the coupling components. This reduced frictional resistance results in lower energy losses and less heat generation during power transmission, contributing to higher efficiency in the system.
  5. Torsional Wind-Up Compensation: When torque is transmitted through the shafts, there can be some degree of torsional wind-up or twist in the coupling. Jaw couplings can compensate for this torsional movement, ensuring that the transmitted power reaches the intended equipment without significant losses due to torsional deformation.
  6. Simple and Robust Design: Jaw couplings have a simple construction, typically consisting of two hubs and an elastomer spider. This straightforward design reduces the number of moving parts and potential points of failure, resulting in a robust and reliable coupling. A reliable coupling minimizes the risk of power losses due to mechanical inefficiencies or breakdowns, thus improving overall power transmission efficiency.

In summary, a jaw coupling enhances power transmission efficiency by providing mechanical flexibility, vibration damping, shock absorption, reduced friction, and torsional wind-up compensation. Its simple and robust design further contributes to reliable power transmission. When selecting a jaw coupling for a specific application, it is essential to consider factors such as torque requirements, operating conditions, and misalignment compensation to ensure optimal efficiency and performance in the system.

jaw coupling

Use of Jaw Couplings in Horizontal and Vertical Shaft Arrangements

Jaw couplings are versatile and can be used in both horizontal and vertical shaft arrangements. Their flexible and misalignment-absorbing design makes them suitable for various applications in different orientations.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the shafts are positioned parallel to the ground. Jaw couplings are commonly employed in this configuration to connect two shafts, such as those found in motor-driven systems, conveyor belts, and pumps.

Vertical Shaft Arrangements: In vertical shaft arrangements, the shafts are positioned perpendicular to the ground, one above the other. Jaw couplings can also be used in this setup to transmit power between the two vertically aligned shafts. Examples of applications with vertical shaft arrangements include some types of gearboxes, vertical pumps, and certain types of compressors.

It’s important to note that when using jaw couplings in vertical shaft arrangements, the weight of the connected equipment can impose axial loads on the coupling. In such cases, the coupling should be selected to handle both the radial and axial loads to ensure reliable performance.

Whether in horizontal or vertical arrangements, jaw couplings provide a cost-effective and efficient method of power transmission while accommodating misalignment and reducing shock loads. However, it is essential to consider the specific application’s requirements and select the appropriate size and type of jaw coupling for optimal performance and longevity.

China best Sintered Alloy Iron/Copper-Iron CNC Machinery Auto Car Motorcycle Electrical Tools Textile Engine Gearbox Transmission Reducer Flexible Shaft Jaw Coupling  China best Sintered Alloy Iron/Copper-Iron CNC Machinery Auto Car Motorcycle Electrical Tools Textile Engine Gearbox Transmission Reducer Flexible Shaft Jaw Coupling
editor by CX 2024-03-01

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *